

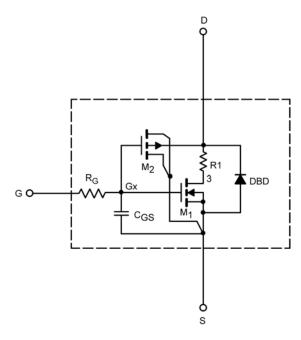
SPICE Device Model SUU/SUD50N04-25P

Vishay Siliconix

N-Channel 40-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

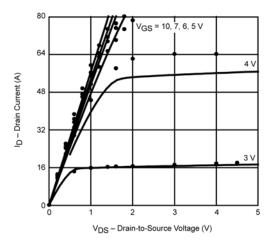
SUBCIRCUIT MODEL SCHEMATIC

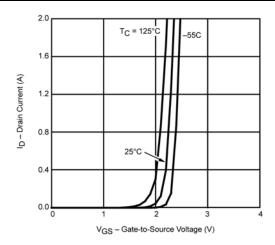
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

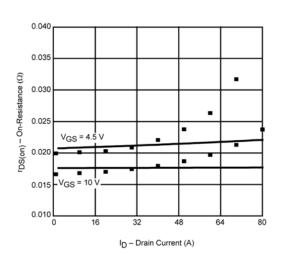
SPICE Device Model SUU/SUD50N04-25P

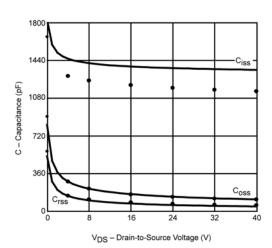
Vishay Siliconix

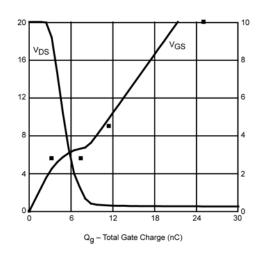
SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERW	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-		-		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.5		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 10 V	494		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 15 A	0.018	0.016	Ω
		V _{GS} = 4.5 V, I _D = 10 A	0.021	0.020	
Forward Voltage ^a	V_{SD}	I _S = 10 A	0.86	0.87	V
Forward Transconductance ^a	9 _{fs}	V_{DS} =15V, I_{D} = 15 A	31	42	S
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz	1376	1195	pF
Output Capacitance	C _{oss}		152	150	
Reverse Transfer Capacitance	C _{rss}		68	80	
Total Gate Charge ^c	Q_g	V_{DS} = 20 V, V_{GS} = 10 V, I_{D} = 30 A	22	25	пС
		V _{DS} = 20 V, V _{GS} = 4.5 V, I _D = 30 A	11	11.4	
Gate-Source Charge ^c	Q_{gs}		3.2	3.2	
Gate-Drain Charge ^c	Q_{gd}		4.2	4.2	

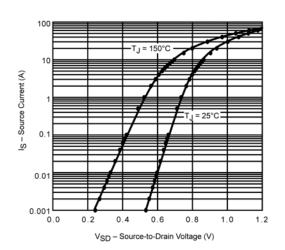

- Notes a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.




SPICE Device Model SUU/SUD50N04-25P


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.